login register my cart
Search All News    
MUZIKSPACE is #1 online Caribbean community where you can meet people, share music, photos and videos for FREE! Create your own blogs, join forums, post classifieds, sell or buy items and much more!
Entertainment Health Living Business Sports
How do antibiotics kill bacteria?

We still don't know exactly how antibiotics kill bacteria. However, this understanding is necessary if we want to develop new antibiotics. This is exactly what we desperately need, as bacteria are becoming increasingly resistant to existing antibiotics. Therefore, researchers from the University Hospital of Bonn (UKB) and the University of Bonn used high-performance microscopy to observe the effect of different antibiotics on the cell division of Staphylococcus aureus. They found that the biosynthesis of peptidoglycan, a core component of the bacterial cell wall, is the driving force for the entire cell division process. In addition, they elucidated how different antibiotics stopped cell division within minutes. The findings have been published in Science Advances.


Bacterial cell walls maintain the shape and integrity of single-celled organisms. Cell wall synthesis plays a key role in bacterial growth: The cell division protein FtsZ forms a so-called Z-ring in the center of the cell, which initiates the division process. A new cell wall is formed there, with peptidoglycan produced as a core component. This contraction produces two identical daughter cells.


Together with a research team led by Ulrich Kubitscheck, Professor of Biophysical Chemistry at the University of Bonn, the UKB research team led by Fabian Grein and Tanja Schneider has chosen one of the most dangerous human pathogens, Staphylococcus aureus, as a model organism for the study. The focus is on the effect of antibiotics that inhibit peptidoglycan synthesis on cell division. "We found that oxacillin and the glycopeptide antibiotics vancomycin and telavacin had a rapid and strong effect on cell division. The cell division protein FtsZ was used here as a marker and we monitored it," says Doctoral student Jan-Samuel Puls. For this purpose, FtsZ is fluorescently labeled together with other proteins. The researchers then analyzed the effect on individual living bacterial cells over time, also using super-resolution microscopy. They built automated image analysis for microscope images, allowing them to quickly analyze all cells in a study sample. "Staphylococcus aureus is only about one micron, or one-thousandth of a millimeter. This makes microscopy particularly challenging," says Dr. Fabian Grein, junior research group leader at UKB's Institute for Pharmaceutical Microbiology and scientist at the German Center for Infection Research (DZIF).


The Bonn research team discovered that the formation of peptidoglycan is the driving force for the entire cell division process. Previously, peptidoglycan synthesis was thought to be necessary only for a specific part of the process. The research team showed that inhibition of S. aureus cell wall assembly by glycopeptide antibiotics occurs rapidly and has a dramatic effect on cell division. In addition, they elucidated in detail the specific role of the essential penicillin-binding protein 2 (PBP2), which links cell wall components, in cell division. The beta-lactam antibiotic oxacillin prevented proper localization of this protein. "This means that PBP2 can't get to where it's needed. As a result, the cells can't divide," Grein said. "Importantly, this all happened immediately after the addition of antibiotics. So, the first cellular effect, which has not been well studied so far, is crucial.” So given the alarming rate of antibiotic resistance worldwide growth, he hopes the findings will lead to a better understanding of how these drugs work at the cellular level, which could hold the key to developing new antibiotics.


Collected by CD BioGlyco, a biotechnology company that provides glycobiology-related products, analysis, custom synthesis, and design to advance glycobiology research. The company also provides Peptidoglycan-based Adjuvant Development, Peptidoglycan Structure Analysis, and Peptidoglycan Purification service for peptidoglycan research.


By: bioglyco
5 Comments   1384 Views
Email a Friend
Send me a Message
Total: 0 Pages:  
Total: 0 Pages:
MuzikSpace Top 10 Rated News
Top MuzikSpace Contributers
0 Comments   248987 Views
0 Comments   29225 Views
0 Comments   85432 Views
0 Comments   2275 Views
0 Comments   19720 Views
0 Comments   173562 Views
0 Comments   3185 Views
vybz cobra
0 Comments   27026 Views
0 Comments   59254 Views
Maria Jackson
0 Comments   55564 Views
Profiles, Blogs Classifieds
Blogs, Forums, Search   Store, Auctions
Videos, Photos, Music   News, Events
About Us Privacy Policy, Terms
Marketing Tools, FAQs
Promote Yourself or Your Services - Create an Online Profile (FREE)
Promote Your Business - Create an Online Store (FREE)
Promote Your Cause - Create a Blog (FREE)
© Copyright Muzikspace 2008. All Content on this website is the property of Muzikspace. Created by Gateserver Design
  All graphics, logos, designs, button icons, photography, videos, scripts & other service names are the trademarks of Muzikspace & users that upload the specific content.
Please wait... loading